Optimal Predictors of General Small Area Parameters Under an Informative Sample Design Using Parametric Sample Distribution Models

Author:

Cho Yanghyeon1ORCID,Guadarrama-Sanz María2,Molina Isabel3,Eideh Abdulhakeem4,Berg Emily5

Affiliation:

1. Columbia University Postdoctoral Research Scientist at the Department of Biostatistics and the Center for Statistical Genetics, The Gertrude H. Sergievsky Center, , New York, NY, USA

2. Luxembourg Institute of Socio-Economic Research Statistician at the , Esch-sur-Alzette, Luxembourg

3. Complutense University of Madrid Faculty in the Department of Statistics and Operations Research, Institute of Interdisciplinary Mathematics (IMI), , Madrid, Spain

4. Al-Quds University (Abu-Dees Campus) Faculty in the Department of Mathematics at the College of Science and Technology, , East Jerusalem, Palestine

5. Iowa State University Faculty in the Department of Statistics at , Ames, IA, USA

Abstract

Abstract Two challenges in small area estimation occur when (i) the sample selection mechanism depends on the outcome variable and (ii) the parameter of interest is a nonlinear function of the response variable in the assumed model. If, given the values of the model covariates, the sample selection mechanism depends on the model response variable, the design is said to be informative for the model. Pfeffermann and Sverchkov (2007) develop a small area estimation procedure for informative sampling, focusing on the prediction of small area means. Molina and Rao (2010) develop a small area estimation procedure for general parameters that are nonlinear functions of the model response variable. The method of Molina and Rao assumes noninformative sampling. We combine these two approaches to develop a procedure for the estimation of general parameters in small areas under informative sampling. We introduce a parametric bootstrap MSE estimator that is appropriate for an informative sample design. We evaluate the validity of the proposed procedures through extensive simulation studies and illustrate the procedures utilizing Mexico’s income data.

Funder

Ministerio de Economía y Competitividad

USDA Natural Resources Conservation Service

U.S. Department of Agriculture’s National Resources Inventory

Publisher

Oxford University Press (OUP)

Reference26 articles.

1. An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data;Battese;Journal of the American Statistical Association,1988

2. An Approximate Best Prediction Approach to Small Area Estimation for Sheet and Rill Erosion under Informative Sampling;Berg;The Annals of Applied Statistics,2021

3. Multivariate Mixture Model for Small Area Estimation of Poverty Indicators;Bikauskaite;Journal of the Royal Statistical Society: Series A (Statistics in Society),2022

4. Small Area Estimation of Complex Parameters under Unit-Level Models with Skew-Normal Errors;Diallo;Scandinavian Journal of Statistics,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small Area Prediction for Exponential Dispersion Families Under Informative Sampling;Journal of Survey Statistics and Methodology;2024-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3