Implicates as Instrumental Variables: An Approach for Estimation and Inference with Probabilistically Matched Data

Author:

Patki Dhiren1,Shapiro Matthew D2

Affiliation:

1. Economist in the Research Department at the Federal Reserve Bank of Boston is an , 600 Atlantic Ave., Boston, MA 02210, USA

2. Economics in the Department of Economics at the University of Michigan is the Lawrence R. Klein Collegiate Professor of , 611 Tappan Ave., Ann Arbor, MI 48109, USA and Director of the Survey Research Center at the Institute for Social Research at the University of Michigan, 426 Thompson St., Ann Arbor, MI 48104, USA

Abstract

Abstract Linkage errors in probabilistically matched data sets can cause biases in the estimation of regression coefficients. This article proposes an approach to obtain consistent estimates and valid inference that relies on instrumental variables. The novelty of the method is to show that instrumental variables arise naturally in the course of probabilistic record linkage thereby allowing for off-the-shelf implementation. Relative to existing approaches, the instrumental variable approach does not require integration of the record linkage and regression analysis steps, the estimation of complex models of linkage error, or computationally expensive methods to estimate standard errors. The instrumental variables approach performs well in Monte Carlo simulations of an environment highlighting a many-to-one linkage problem.

Funder

University of Michigan

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Statistics, Probability and Uncertainty,Social Sciences (miscellaneous),Statistics and Probability

Reference24 articles.

1. The LEHD Infrastructure Files and The Creation of The Quarterly Workforce Indicators

2. Estimating Measurement Error in Annual Job Earnings: A Comparison of Survey and Administrative Data;Abowd;Review of Economics and Statistics,2013

3. Estimates of the Economic Return to Schooling from a New Sample of Twins;Ashenfelter;American Economic Review,1994

4. Inequality and the Disappearing Large Firm Wage Premium;Bloom;American Economic Association Papers and Proceedings,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advances in Data Integration;Journal of Survey Statistics and Methodology;2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3