Transcriptomic characterization of Lonrf1 at the single-cell level under pathophysiological conditions

Author:

Li Dan1,Wang Teh-Wei1,Aratani Sae12ORCID,Omori Satotaka1,Tamatani Maho1,Johmura Yoshikazu3,Nakanishi Makoto1

Affiliation:

1. Institute of Medical Science, University of Tokyo Division of Cancer Cell Biology, , 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan

2. Graduate School of Medicine, Nippon Medical School Department of Endocrinology, Metabolism, and Nephrology, , 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan

3. Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University Division of Cancer and Senescence Biology, , Kakuma-machi, Kanazawa 920-1192, Japan

Abstract

Abstract The LONRF family of proteins consists of three isozymes, LONRF1–3, which harbors RING (really interesting new gene) domain and Lon substrate binding domain. We have recently identified LONRF2 as a protein quality control ubiquitin ligase that acts predominantly in neurons. LONRF2 selectively ubiquitylates misfolded or damaged proteins for degradation. LONRF2−/− mice exhibit late-onset neurological deficits. However, the physiological implications of other LONRF isozymes remain unclear. Here, we analysed Lonrf1 expression and transcriptomics at the single-cell level under normal and pathological conditions. We found that Lonrf1 was ubiquitously expressed in different tissues. Its expression in LSEC and Kupffer cells increased with age in the liver. Lonrf1high Kupffer cells showed activation of regulatory pathways of peptidase activity. In normal and NASH (nonalcoholic steatohepatitis) liver, Lonrf1high LSECs showed activation of NF-kB and p53 pathways and suppression of IFNa, IFNg and proteasome signalling independent of p16 expression. During wound healing, Lonrf1high/p16low fibroblasts showed activation of cell growth and suppression of TGFb and BMP (bone morphogenetic protein) signalling, whereas Lonrf1high/p16high fibroblasts showed activation of WNT (wingless and Int-1) signalling. These results suggest that although Lonrf1 does not seem to be associated with senescence induction and phenotypes, LONRF1 may play a key role in linking oxidative damage responses and tissue remodelling during wound healing in different modes in senescent and nonsenescent cells.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3