PLAAT1 expression triggers fragmentation of mitochondria in an enzyme activity-dependent manner

Author:

Sikder Mohammad Mamun1,Uyama Toru1,Sasaki Sumire1,Kawai Katsuhisa2,Araki Nobukazu2,Ueda Natsuo1

Affiliation:

1. Kagawa University School of Medicine Department of Biochemistry, , 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan

2. Kagawa University School of Medicine Department of Histology and Cell Biology, , 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan

Abstract

Abstract The phospholipase A and acyltransferase (PLAAT) family is a protein family consisting of five members (PLAAT1–5), which acts as phospholipid-metabolizing enzymes with phospholipase A1/A2 and N-acyltransferase activities. Since we previously reported that the overexpression of PLAAT3 in mammalian cells causes the specific disappearance of peroxisomes, in the present study we examined a possible effect of PLAAT1 on organelles. We prepared HEK293 cells expressing mouse PLAAT1 in a doxycycline-dependent manner and found that the overexpression of PLAAT1 resulted in the transformation of mitochondria from the original long rod shape to a round shape, as well as their fragmentation. In contrast, the overexpression of a catalytically inactive point mutant of PLAAT1 did not generate any morphological change in mitochondria, suggesting the involvement of catalytic activity. PLAAT1 expression also caused the reduction of peroxisomes, while the levels of the marker proteins for ER, Golgi apparatus and lysosomes were almost unchanged. In PLAAT1-expressing cells, the level of dynamin-related protein 1 responsible for mitochondrial fission was increased, whereas those of optic atrophy 1 and mitofusin 2, both of which are responsible for mitochondrial fusion, were reduced. These results suggest a novel role of PLAAT1 in the regulation of mitochondrial biogenesis.

Funder

Grants-in-Aid for Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3