Generation of Yellow Flowers of the Japanese Morning Glory by Engineering Its Flavonoid Biosynthetic Pathway toward Aurones

Author:

Hoshino Atsushi12ORCID,Mizuno Takayuki3,Shimizu Keiichi4,Mori Shoko5,Fukada-Tanaka Sachiko1,Furukawa Kazuhiko1,Ishiguro Kanako6,Tanaka Yoshikazu6,Iida Shigeru1

Affiliation:

1. National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan

2. Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan

3. Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan

4. Faculty of Agriculture, Kagoshima University, Kagoshima, Japan

5. Suntory Foundation for Life Sciences, Seika, Kyoto, Japan

6. Research Institute, Suntory Global Innovation Center Ltd, Seika, Kyoto, Japan

Abstract

Abstract Wild-type plants of the Japanese morning glory (Ipomoea nil) produce blue flowers that accumulate anthocyanin pigments, whereas its mutant cultivars show wide range flower color such as red, magenta and white. However, I. nil lacks yellow color varieties even though yellow flowers were curiously described in words and woodblocks printed in the 19th century. Such yellow flowers have been regarded as ‘phantom morning glories’, and their production has not been achieved despite efforts by breeders of I. nil. The chalcone isomerase (CHI) mutants (including line 54Y) bloom very pale yellow or cream-colored flowers conferred by the accumulation of 2′, 4′, 6′, 4-tetrahydoroxychalcone (THC) 2′-O-glucoside. To produce yellow phantom morning glories, we introduced two snapdragon (Antirrhinum majus) genes to the 54Y line by encoding aureusidin synthase (AmAS1) and chalcone 4′-O-glucosyltransferase (Am4′CGT), which are necessary for the accumulation of aureusidin 6-O-glucoside and yellow coloration in A. majus. The transgenic plants expressing both genes exhibit yellow flowers, a character sought for many years. The flower petals of the transgenic plants contained aureusidin 6-O-glucoside, as well as a reduced amount of THC 2′-O-glucoside. In addition, we identified a novel aurone compound, aureusidin 6-O-(6″-O-malonyl)-glucoside, in the yellow petals. A combination of the coexpression of AmAS1 and Am4′CGT and suppression of CHI is an effective strategy for generating yellow varieties in horticultural plants.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3