Lipid Transfer Proteins (AaLTP3 and AaLTP4) Are Involved in Sesquiterpene Lactone Secretion from Glandular Trichomes in Artemisia annua

Author:

Adhikari Prakash Babu1ORCID,Han Jung Yeon1,Ahn Chang Ho1,Choi Yong Eui1

Affiliation:

1. Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea

Abstract

Abstract In Artemisia annua plants, glandular trichomes (GTs) are responsible for the biosynthesis and secretion of sesquiterpene lactones including artemisinin/arteannuin B. Nonspecific lipid transfer proteins (LTPs) in plants bind and carry lipid molecules across the cell membrane and are also known as secretary proteins. Interestingly, the transcripts of LTP genes are exceptionally abundant in the GTs of A. annua. In the present study, we isolated two trichome-specific LTP genes (AaLTP3 and AaLTP4) from a Korean ecotype of A. annua. AaLTP3 was expressed abundantly in shoots, whereas AaLTP4 was expressed in flowers. The GUS signal driven by the AaLTP3 or AaLTP4 promoter in transgenic A. annua plants revealed that the AaLTP3 promoter was active on hair-like non-GTs and that the AaLTP4 promoter was active on GTs. Analysis of enhanced cyan fluorescent protein (ECFP) fluorescence fused with the AaLTP3 or AaLTP4 protein in transgenic tobacco revealed that ECFP florescence was very bright on secreted lipids of long GTs. Moreover, the florescence was also bright on the head cells of short trichomes and their secreted granules. Immunoblotting analysis of GT exudates in petioles of A. annua revealed a strong positive signal against the AaLTP4 antibody. Overexpression of AaLTP3 or AaLTP4 in transgenic A. annua plants resulted in enhanced production of sesquiterpene lactones (arteannuin B, artemisinin, dihydroartemisinic acid and artemisinic acid) compared with those of wild type. The present study shows that LTP genes (AaLTP3 or AaLTP4) play important roles in the sequestration and secretion of lipids in GTs of A. annua, which is useful for the enhanced production of sesquiterpene lactones by genetic engineering.

Funder

National Research Foundation of Korea

NRF

Korean government

Rural Development Administration, Republic of Korea

Next-Generation Bio-Green 21 Program

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3