Arabidopsis Class I Formin FH1 Relocates between Membrane Compartments during Root Cell Ontogeny and Associates with Plasmodesmata

Author:

Oulehlov� Denisa12,Koll�rov� Eva1,Cifrov� Petra1,Pejchar Přemysl12,Žï¿½rsk� Viktor12,Cvrčkov� Fatima1

Affiliation:

1. Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, CZ 128 43, Czech Republic

2. Institute of Experimental Botany of the CAS, Prague 6, CZ 165 02, Czech Republic

Abstract

Abstract Formins are evolutionarily conserved eukaryotic proteins engaged in actin nucleation and other aspects of cytoskeletal organization. Angiosperms have two formin clades with multiple paralogs; typical plant Class I formins are integral membrane proteins that can anchor cytoskeletal structures to membranes. For the main Arabidopsis housekeeping Class I formin, FH1 (At3g25500), plasmalemma localization was documented in heterologous expression and overexpression studies. We previously showed that loss of FH1 function increases cotyledon epidermal pavement cell shape complexity via modification of actin and microtubule organization and dynamics. Here, we employ transgenic Arabidopsis expressing green fluorescent protein-tagged FH1 (FH1-GFP) from its native promoter to investigate in vivo behavior of this formin using advanced microscopy techniques. The fusion protein is functional, since its expression complements the fh1 loss-of-function mutant phenotype. Accidental overexpression of FH1-GFP results in a decrease in trichome branch number, while fh1 mutation has the opposite effect, indicating a general role of this formin in controlling cell shape complexity. Consistent with previous reports, FH1-GFP associates with membranes. However, the protein exhibits surprising actin- and secretory pathway-dependent dynamic localization and relocates between cellular endomembranes and the plasmalemma during cell division and differentiation in root tissues, with transient tonoplast localization at the transition/elongation zones border. FH1-GFP also accumulates in actin-rich regions of cortical cytoplasm and associates with plasmodesmata in both the cotyledon epidermis and root tissues. Together with previous reports from metazoan systems, this suggests that formins might have a shared (ancestral or convergent) role at cell–cell junctions.

Funder

Czech Republic

Ministry of Education, Youth and Sports of the Czech Republic

European Regional Development Fund

Czech-BioImaging

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3