A Novel Bacterial Nitrate Transporter Composed of Small Transmembrane Proteins

Author:

Maeda Shin-ichi1,Aoba Risa1,Nishino Yuma1,Omata Tatsuo1

Affiliation:

1. Laboratory of Photosynthesis Research, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan

Abstract

AbstractA putative silent gene of the freshwater cyanobacterium Synechococcus elongatus strain PCC 7942, encoding a small protein with two transmembrane helices, was named nrtS, since its overexpression from an inducible promoter conferred nitrate uptake activity on the nitrate transport-less NA4 mutant of S. elongatus. Homologs of nrtS, encoding proteins of 67–118 amino acid residues, are present in a limited number of eubacteria including mostly cyanobacteria and proteobacteria, but some others, e.g. the actinobacteria of the Mycobacterium tuberculosis complex, also have the gene. When expressed in NA4, the nrtS homolog of the γ-proteobacterium Marinomonas mediterranea took up nitrate with higher affinity for the substrate as compared with the S. elongatus NrtS (Km of 0.49 mM vs. 2.5 mM). Among the 61 bacterial species carrying the nrtS homolog, the marine cyanobacterium Synechococcus sp. strain PCC 7002 is unique in having two nrtS genes (nrtS1 and nrtS2) located in tandem on the chromosome. Coexpression of the two genes in NA4 resulted in nitrate uptake with a Km (NO3−) of 0.15 mM, while expression of either of the two resulted in low-affinity nitrate uptake activity with Km values of >3 mM, indicating that NrtS1 and NrtS2 form a heteromeric transporter complex. The heteromeric transporter was shown to transport nitrite as well. A Synechococcus sp. strain PCC 7002 mutant defective in the nitrate transporter (NrtP) showed a residual activity of nitrate uptake, which was ascribed to the NrtS proteins. Blue-native PAGE and immunoblotting analysis suggested a hexameric structure for the NrtS proteins.

Funder

Young Scientists

Scientific Research in Innovative Areas

Ministry of Education, Culture, Sports, Science and Technology, Japan

Japan Science and Technology Agency

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3