Phototropins Mediate Chloroplast Movement in Phalaenopsis aphrodite (Moth Orchid)

Author:

Lin Yi-Jyun1,Chen Yu-Chung12,Tseng Kuan-Chieh3,Chang Wen-Chi23,Ko Swee-Suak14ORCID

Affiliation:

1. Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan

2. Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, Taiwan

3. Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan

4. Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan

Abstract

AbstractChloroplast movement is important for plants to avoid photodamage and to perform efficient photosynthesis. Phototropins are blue light receptors in plants that function in chloroplast movement, phototropism, stomatal opening, and they also affect plant growth and development. In this study, full-length cDNAs of two PHOTOTROPIN genes, PaPHOT1 and PaPHOT2, were cloned from a moth orchid Phalaenopsis aphrodite, and their functions in chloroplast movement were investigated. Phylogenetic analysis showed that PaPHOT1 and PaPHOT2 orthologs were highly similar to PHOT1 and PHOT2 of the close relative Phalaenopsis equestris, respectively, and clustered with monocots PHOT1 and PHOT2 orthologs, respectively. Phalaenopsis aphrodite expressed a moderate level of PaPHOT1 under low blue light of 5 μmol�m−2�s−1 (BL5) and a high levels of PaPHOT1 at >BL100. However, PaPHOT2 was expressed at low levels at <BL50 but expressed at high levels at > BL100. Analysis of light-induced chloroplast movements using the SPAD method indicated that orchid accumulated chloroplasts at <BL10. The chloroplast avoidance response was detectable at >BL25 and significant chloroplast avoidance movement was observed at >BL100. Virus-induced gene silencing of PaPHOTs in orchids showed decreased gene expression of PaPHOTs and reduced both chloroplast accumulation and avoidance responses. Heterologous expression of PaPHOT1 in Arabidopsis phot1phot2 double mutant recovered chloroplast accumulation response at BL5, but neither PaPHOT1 nor PaPHOT2 was able to restore mutant chloroplast avoidance at BL100. Overall, this study showed that phototropins mediate chloroplast movement in Phalaenopsis orchid is blue light-dependent but their function is slightly different from Arabidopsis which might be due to gene evolution.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3