Type II Ice-Binding Proteins Isolated from an Arctic Microalga Are Similar to Adhesin-Like Proteins and Increase Freezing Tolerance in Transgenic Plants

Author:

Cho Sung Mi1,Kim Sanghee2,Cho Hojin13,Lee Hyoungseok13,Lee Jun Hyuck13,Lee Horim4,Park Hyun135ORCID,Kang Seunghyun1,Choi Han-Gu2,Lee Jungeun13ORCID

Affiliation:

1. Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea

2. Division of Polar Life Sciences, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea

3. Department of Polar Science, University of Science and Technology, Daejeon 34113, Republic of Korea

4. Department of Biotechnology, Duksung Women’s University, Seoul 01369, Republic of Korea

5. Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea

Abstract

AbstractMicroalgal ice-binding proteins (IBPs) in the polar region are poorly understood at the genome-wide level, although they are important for cold adaptation. Through the transcriptome study with the Arctic green alga Chloromonas sp. KNF0032, we identified six Chloromonas IBP genes (CmIBPs), homologous with the previously reported IBPs from Antarctic snow alga CCMP681 and Antarctic Chloromonas sp. They were organized with multiple exon/intron structures and low-temperature-responsive cis-elements in their promoters and abundantly expressed at low temperature. The biological functions of three representative CmIBPs (CmIBP1, CmIBP2 and CmIBP3) were tested using in vitro analysis and transgenic plant system. CmIBP1 had the most effective ice recrystallization inhibition (IRI) activities in both in vitro and transgenic plants, and CmIBP2 and CmIBP3 had followed. All transgenic plants grown under nonacclimated condition were freezing tolerant, and especially 35S::CmIBP1 plants were most effective. After cold acclimation, only 35S::CmIBP2 plants showed slightly increased freezing tolerance. Structurally, the CmIBPs were predicted to have β-solenoid forms with parallel β-sheets and repeated TXT motifs. The repeated TXT structure of CmIBPs appears similar to the AidA domain-containing adhesin-like proteins from methanogens. We have shown that the AidA domain has IRI activity as CmIBPs and phylogenetic analysis also supported that the AidA domains are monophyletic with ice-binding domain of CmIBPs, and these results suggest that CmIBPs are a type of modified adhesins.

Funder

Korea Polar Research Institute

KOPRI

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3