Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs

Author:

Yamamoto Akihiro1,Ishida Takashi2ORCID,Yoshimura Mika2,Kimura Yuri1,Sawa Shinichiro1

Affiliation:

1. Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan

2. International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kurokami 2-39-1, Kumamoto, Japan

Abstract

Abstract Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9), comprising an RNA-guided DNA endonuclease and a programmable guide RNA (gRNA), is currently recognized to be a powerful genome-editing tool and is widely used in biological science. Despite the usefulness of the system, a protospacer-adjacent motif (PAM) immediately downstream of the target sequence needs to be taken into account in the design of the gRNA, a requirement which limits the flexibility of the CRISPR-based genome-editing system. To overcome this limitation, a Cas9 isolated from Streptococcus pyogenes, namely SpCas9, engineered to develop several variants of Cas9 nuclease, has been generated. SpCas9 recognizes the NGG sequence as the PAM, whereas its variants are capable of interacting with different PAMs. Despite the potential advantage of the Cas9 variants, their functionalities have not previously been tested in the widely used model plant, Arabidopsis thaliana. Here, we developed a plant-specific vector series harboring SpCas9-VQR (NGAN or NGNG) or SpCas9-EQR (NGAG) and evaluated their functionalities. These modified Cas9 nucleases efficiently introduced mutations into the CLV3 and AS1 target genes using gRNAs that were compatible with atypical PAMs. Furthermore, the generated mutations were passed on to their offspring. This study illustrated the usefulness of the SpCas9 variants because the ability to generate heritable mutations will be of great benefit in molecular genetic analyses. A greater number of potential SpCas9-variant-recognition sites in these genes are predicted, compared with those of conventional SpCas9. These results demonstrated the usefulness of the SpCas9 variants for genome editing in the field of plant science research.

Funder

Promotion of Science (JSPS) KAKENHI

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3