BaeR participates in cephalosporins susceptibility by regulating the expression level of outer membrane proteins in Escherichia coli

Author:

Wang Shuaiyang1,You Chunbo2,Memon Fareed Qumar1,Zhang Geyin1,Sun Yawei3,Si Hongbin1

Affiliation:

1. College of Animal Science and Technology, Guangxi University, Nanning 530005, People’s Republic of China

2. Guangxi Nongken Yongxin Animal Husbandry Group Xijiang Co. LTD, Guigang 537000, People’s Republic of China

3. College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, People’s Republic of China

Abstract

Abstract The two-component system BaeSR participates in antibiotics resistance of Escherichia coli. To know whether the outer membrane proteins involve in the antibiotics resistance mediated by BaeSR, deletion of acrB was constructed and the recombined plasmid p-baeR was introduced into E. coli K12 and K12△acrB. Minimum inhibitory concentrations (MICs) of antibacterial agents were determined by 2-fold broth micro-dilution method. Gene expressions related with major outer membrane proteins and multidrug efflux pump-related genes were determined by real-time quantitative reverse transcription polymerase chain reaction. The results revealed that the MICs of K12ΔacrB to the tested drugs except for gentamycin and amikacin decreased 2- to 16.75-folds compared with those of K12. When BaeR was overexpressed, the MICs of K12ΔacrB/p-baeR to ceftiofur and cefotaxime increased 2.5- and 2-fold, respectively, compared with their corresponding that of K12△acrB. At the same time, the expression levels of ompC, ompF, ompW, ompA and ompX showed significant reduction in K12ΔacrB/p-baeR as compared with K12△acrB. Moreover, the expression levels of ompR, marA, rob and tolC also significantly ‘decreased’ in K12ΔacrB/p-baeR. These findings indicated that BaeR overproduction can decrease cephalosporins susceptibility in acrB-free E. coli by decreasing the expression level of outer membrane proteins.

Funder

Science and Technology Major Project of Guangxi

National Natural Science Foundation of China

Key Research and Development Plan of Guangxi

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3