Quantitative nascent proteome profiling by dual-pulse labelling with O-propargyl-puromycin and stable isotope-labelled amino acids

Author:

Uchiyama Junki1,Ishihama Yasushi12,Imami Koshi13ORCID

Affiliation:

1. Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan

2. Department of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan

3. PRESTO, Japan Science and Technology Agency (JST), 5-3 Yonban-cho, Chiyoda-ku, Tokyo 102-0075, Japan

Abstract

Abstract Monitoring translational regulation in response to environmental signals is crucial for understanding cellular proteostasis. However, only limited approaches are currently available for quantifying acute changes in protein synthesis induced by stimuli. Recently, a clickable puromycin analogue, O-propargyl-puromycin (OPP), was developed and applied to label the C-termini of nascent polypeptide chains (NPCs). Following affinity purification via a click reaction, OPP allows for a proteomic analysis of NPCs. Despite its advantage, the affinity purification of NPCs using magnetic beads or resins inherently suffers from significant non-specific protein binding, which hinders accurate quantification of the nascent proteins. To address this issue, we employed dual-pulse labelling of NPCs with both OPP and stable isotope-labelled amino acids to distinguish bona fide NPCs from non-specific proteins, thereby enabling the accurate quantitative profiling of NPCs. We applied this method to dissecting translation responses upon transcriptional inhibition and quantified ∼3,000 nascent proteins. We found that the translation of a subset of ribosomal proteins (e.g. RPSA, RPLP0) as well as signalling proteins (e.g. BCAR3, EFNA1, DUSP1) was significantly repressed by transcription inhibition. Together, the present method provides an accurate and broadly applicable nascent proteome profiling for many biological applications at the level of translation.

Funder

JSPS Grant-in-Aid for Scientific Research

JST PRESTO

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3