Speciation of Iodide, Iodine, and Iodate in Environmental Matrixes by Inductively Coupled Plasma Atomic Emission Spectrometry Using in situ Chemical Manipulation

Author:

Anderson Kim A1,Markowski Peter2

Affiliation:

1. University of Idaho, Department of Food Science and Toxicology, Analytical Sciences Laboratory, Holm Research Center, Moscow, ID 83844-2201; Oregon State University, Department of Environmental and Molecular Toxicology, Food Safety and Environmental Stewardship Laboratory, Agriculture and Life Sciences Building, Corvallis, OR 97331-7301

2. University of Idaho, Department of Food Science and Toxicology, Analytical Sciences Laboratory, Holm Research Center, Moscow, ID 83844-2201

Abstract

Abstract Dissolved iodine, iodide, and iodate are determined in environmental matrixes by in situ chemical manipulation and inductively coupled plasma atomic emission spectrometry (ICPAES). The method uses equipment commonly available to most laboratories involved in environmental inorganic analysis. Total dissolved iodine, iodide, and iodate are determined by ICPAES using iodine vapor generation. Total iodine is determined directly by ICPAES after filtration. Total dissolved iodide (I−) is oxidized in situ to iodine by the addition of sodium nitrite in sulfuric acid in a simplified continuous flow manifold. Iodate is determined by prereduction at the instrument before analysis by the in situ oxidation ICPAES procedure. A standard nebulizer produces the gas–liquid separation of the total iodine, which is then quantified by ICPAES at 206.16 nm. The instrument detection limit for the iodine analysis was 0.04 μg/mL. Recoveries from seawater, saltwater, and freshwater standard reference materials ranged from 85 to 118% and averaged 98%. For samples containing both iodine and iodide, the total is determined with in situ oxidation, iodine is determined without the oxidizing reagents, and iodide is calculated from the difference. For samples containing all 3 species, pre-reduction is used and the iodine and iodide concentrations are subtracted for quantitation of iodate. The analysis is selective for these 3 species (I−, I2, and IO−3). A group of 20–30 samples may be analyzed and quantitated for all 3 individual, commonly occurring iodide species in less than 1 h. The procedure is considerably faster than any other reported techniques. This method is especially well-suited to the analysis of small environmental samples.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3