ReCIDE: robust estimation of cell type proportions by integrating single-reference-based deconvolutions

Author:

Li Minghan12ORCID,Su Yuqing12,Gao Yanbo3,Tian Weidong1245ORCID

Affiliation:

1. State Key Laboratory of Genetic Engineering , Department of Computational Biology, School of Life Sciences, , 2005 Songhu Road, Yangpu District, Shanghai 200438 , China

2. Fudan University , Department of Computational Biology, School of Life Sciences, , 2005 Songhu Road, Yangpu District, Shanghai 200438 , China

3. Shanghai SPH Jiaolian Pharmaceutical Technology Company, Limited , Buliding 4, 998 Ha Lei Road, Pudong District, Shanghai 201203 , China

4. Children’s Hospital of Fudan University , 399 Wanyuan Road, Minhang District, Shanghai 201102 , China

5. Children’s Hospital of Shandong University , 23976 Jingshi Road, Huaiyin District, Jinan, Shandong 250022 , China

Abstract

Abstract In this study, we introduce Robust estimation of Cell type proportions by Integrating single-reference-based DEconvolutions (ReCIDE), an innovative framework for robust estimation of cell type proportions by integrating single-reference-based deconvolutions. ReCIDE outperforms existing approaches in benchmark and real datasets, particularly excelling in estimating rare cell type proportions. Through exploratory analysis on public bulk data of triple-negative breast cancer (TNBC) patients using ReCIDE, we demonstrate a significant correlation between the prognosis of TNBC patients and the proportions of both T cell and perivascular-like cell subtypes. Built upon this discovery, we develop a prognostic assessment model for TNBC patients. Our contribution presents a novel framework for enhancing deconvolution accuracy, showcasing its effectiveness in medical research.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3