BiGATAE: a bipartite graph attention auto-encoder enhancing spatial domain identification from single-slice to multi-slices

Author:

Tao Yuhao123,Sun Xiaoang123,Wang Fei123ORCID

Affiliation:

1. Shanghai Key Lab of Intelligent Information Processing , Handan Street, 200433 Shanghai , China

2. School of Computer Science and Technology ,   Handan Street, 200433 Shanghai , China

3. Fudan University ,   Handan Street, 200433 Shanghai , China

Abstract

Abstract Recent advancements in spatial transcriptomics technology have revolutionized our ability to comprehensively characterize gene expression patterns within the tissue microenvironment, enabling us to grasp their functional significance in a spatial context. One key field of research in spatial transcriptomics is the identification of spatial domains, which refers to distinct regions within the tissue where specific gene expression patterns are observed. Diverse methodologies have been proposed, each with its unique characteristics. As the availability of spatial transcriptomics data continues to expand, there is a growing need for methods that can integrate information from multiple slices to discover spatial domains. To extend the applicability of existing single-slice analysis methods to multi-slice clustering, we introduce BiGATAE (Bipartite Graph Attention Auto Encoder) that leverages gene expression information from adjacent tissue slices to enhance spatial transcriptomics data. BiGATAE comprises two steps: aligning slices to generate an adjacency matrix for different spots in consecutive slices and constructing a bipartite graph. Subsequently, it utilizes a graph attention network to integrate information across different slices. Then it can seamlessly integrate with pre-existing techniques. To evaluate the performance of BiGATAE, we conducted benchmarking analyses on three different datasets. The experimental results demonstrate that for existing single-slice clustering methods, the integration of BiGATAE significantly enhances their performance. Moreover, single-slice clustering methods integrated with BiGATAE outperform methods specifically designed for multi-slice integration. These results underscore the proficiency of BiGATAE in facilitating information transfer across multiple slices and its capacity to broaden the applicability and sustainability of pre-existing methods.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3