scCRT: a contrastive-based dimensionality reduction model for scRNA-seq trajectory inference

Author:

Shi Yuchen1,Wan Jian2,Zhang Xin1,Liang Tingting1,Yin Yuyu1

Affiliation:

1. Hangzhou Dianzi University , Hangzhou City, Zhejiang Province , China

2. Hangzhou Dianzi University, the Key Laboratory of Biomedical Intelligent Computing Technology of Zhejiang Province, and Zhejiang University of Science and Technology , Hangzhou City, Zhejiang Province , China

Abstract

Abstract Trajectory inference is a crucial task in single-cell RNA-sequencing downstream analysis, which can reveal the dynamic processes of biological development, including cell differentiation. Dimensionality reduction is an important step in the trajectory inference process. However, most existing trajectory methods rely on cell features derived from traditional dimensionality reduction methods, such as principal component analysis and uniform manifold approximation and projection. These methods are not specifically designed for trajectory inference and fail to fully leverage prior information from upstream analysis, limiting their performance. Here, we introduce scCRT, a novel dimensionality reduction model for trajectory inference. In order to utilize prior information to learn accurate cells representation, scCRT integrates two feature learning components: a cell-level pairwise module and a cluster-level contrastive module. The cell-level module focuses on learning accurate cell representations in a reduced-dimensionality space while maintaining the cell–cell positional relationships in the original space. The cluster-level contrastive module uses prior cell state information to aggregate similar cells, preventing excessive dispersion in the low-dimensional space. Experimental findings from 54 real and 81 synthetic datasets, totaling 135 datasets, highlighted the superior performance of scCRT compared with commonly used trajectory inference methods. Additionally, an ablation study revealed that both cell-level and cluster-level modules enhance the model’s ability to learn accurate cell features, facilitating cell lineage inference. The source code of scCRT is available at https://github.com/yuchen21-web/scCRT-for-scRNA-seq.

Funder

Yangtze River Delta Project

‘Pioneer” and “Leading Goose’ R&D Program of Zhejiang, China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3