Comparative analyses of gene networks mediating cancer metastatic potentials across lineage types

Author:

Wang Sheng12,Stroup Emily K34,Wang Ting-You54ORCID,Yang Rendong54,Ji Zhe1234ORCID

Affiliation:

1. Department of Biomedical Engineering , McCormick School of Engineering, , 2145 Sheridan Road, Evanston, IL 60628 , United States

2. Northwestern University , McCormick School of Engineering, , 2145 Sheridan Road, Evanston, IL 60628 , United States

3. Department of Pharmacology , Feinberg School of Medicine, , 303 E Superior Street, Chicago, IL 60611 , United States

4. Northwestern University , Feinberg School of Medicine, , 303 E Superior Street, Chicago, IL 60611 , United States

5. Department of Urology , Feinberg School of Medicine, , 303 E Superior Street, Chicago, IL 60611 , United States

Abstract

Abstract Studies have identified genes and molecular pathways regulating cancer metastasis. However, it remains largely unknown whether metastatic potentials of cancer cells from different lineage types are driven by the same or different gene networks. Here, we aim to address this question through integrative analyses of 493 human cancer cells’ transcriptomic profiles and their metastatic potentials in vivo. Using an unsupervised approach and considering both gene coexpression and protein–protein interaction networks, we identify different gene networks associated with various biological pathways (i.e. inflammation, cell cycle, and RNA translation), the expression of which are correlated with metastatic potentials across subsets of lineage types. By developing a regularized random forest regression model, we show that the combination of the gene module features expressed in the native cancer cells can predict their metastatic potentials with an overall Pearson correlation coefficient of 0.90. By analyzing transcriptomic profile data from cancer patients, we show that these networks are conserved in vivo and contribute to cancer aggressiveness. The intrinsic expression levels of these networks are correlated with drug sensitivity. Altogether, our study provides novel comparative insights into cancer cells’ intrinsic gene networks mediating metastatic potentials across different lineage types, and our results can potentially be useful for designing personalized treatments for metastatic cancers.

Funder

National Institutes of Health

Predoctoral Training Program in Biomedical Data Driven Discovery

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3