Single-cell RNA sequencing data imputation using bi-level feature propagation

Author:

Lee Junseok1,Yun Sukwon2,Kim Yeongmin3,Chen Tianlong245,Kellis Manolis45,Park Chanyoung1

Affiliation:

1. Department of Industrial and Systems Engineering, KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 34141 , Republic of Korea

2. Department of Computer Science , 201 S. Columbia St. CB 3175, UNC-Chapel Hill, Chapel Hill, NC 27599 , United States

3. School of Computing, KAIST , 291 Daehak-ro, Yuseong-gu, Daejeon 34141 , Republic of Korea

4. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology , 32 Vassar St, Cambridge, MA 02139 , United States

5. Broad Institute of MIT and Harvard , Merkin Building, 415 Main St., Cambridge, MA 02142 , United States

Abstract

Abstract Single-cell RNA sequencing (scRNA-seq) enables the exploration of cellular heterogeneity by analyzing gene expression profiles in complex tissues. However, scRNA-seq data often suffer from technical noise, dropout events and sparsity, hindering downstream analyses. Although existing works attempt to mitigate these issues by utilizing graph structures for data denoising, they involve the risk of propagating noise and fall short of fully leveraging the inherent data relationships, relying mainly on one of cell–cell or gene–gene associations and graphs constructed by initial noisy data. To this end, this study presents single-cell bilevel feature propagation (scBFP), two-step graph-based feature propagation method. It initially imputes zero values using non-zero values, ensuring that the imputation process does not affect the non-zero values due to dropout. Subsequently, it denoises the entire dataset by leveraging gene–gene and cell–cell relationships in the respective steps. Extensive experimental results on scRNA-seq data demonstrate the effectiveness of scBFP in various downstream tasks, uncovering valuable biological insights.

Funder

Institute of Information & communications Technology Planning & Evaluation

Korea government

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3