SuperCUT, an unsupervised multimodal image registration with deep learning for biomedical microscopy

Author:

Grexa Istvan12ORCID,Iván Zsanett Zsófia13,Migh Ede1,Kovács Ferenc14,Bolck Hella A5,Zheng Xiang67,Mund Andreas67ORCID,Moshkov Nikita1,Miczán Vivien1,Koos Krisztian1,Horvath Peter1489ORCID

Affiliation:

1. Synthetic and Systems Biology Unit, Biological Research Centre (BRC) , Temesvári körút 62, Szeged 6726

2. Doctoral School of Interdisciplinary Medicine, University of Szeged , Korányi fasor 10, Szeged 6720 Hungary

3. Doctoral School of Biology, University of Szeged , Közép fasor 52, Szeged 6726 Hungary

4. Single-Cell Technologies Ltd , Temesvári körút 62, Szeged 6726 , Hungary

5. Department of Pathology and Molecular Pathology, University Hospital Zürich , Zürich, Schmelzbergstrasse 12 8091 , Switzerland

6. Novo Nordisk Foundation Center for Protein Research , Faculty of Health and Medical Sciences, , Copenhagen, Tuborg Havnevej 19 2900 Hellerup , Denmark

7. University of Copenhagen , Faculty of Health and Medical Sciences, , Copenhagen, Tuborg Havnevej 19 2900 Hellerup , Denmark

8. Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki , Tukholmankatu 8, Helsinki 00014 , Finland

9. Institute of AI for Health, Helmholtz Zentrum München , Ingolstädter Landstraße 1, 85764 Oberschleißheim Neuherberg , Germany

Abstract

Abstract Numerous imaging techniques are available for observing and interrogating biological samples, and several of them can be used consecutively to enable correlative analysis of different image modalities with varying resolutions and the inclusion of structural or molecular information. Achieving accurate registration of multimodal images is essential for the correlative analysis process, but it remains a challenging computer vision task with no widely accepted solution. Moreover, supervised registration methods require annotated data produced by experts, which is limited. To address this challenge, we propose a general unsupervised pipeline for multimodal image registration using deep learning. We provide a comprehensive evaluation of the proposed pipeline versus the current state-of-the-art image registration and style transfer methods on four types of biological problems utilizing different microscopy modalities. We found that style transfer of modality domains paired with fully unsupervised training leads to comparable image registration accuracy to supervised methods and, most importantly, does not require human intervention.

Funder

New National Excellence Program of the Ministry for Culture and Innovation

National Research, Development, and Innovation Fund

Novo Nordisk Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3