Contrastive learning for enhancing feature extraction in anticancer peptides

Author:

Lee Byungjo1,Shin Dongkwan12

Affiliation:

1. Research Institute, National Cancer Center , 323, Ilsan-ro, Ilsandong-gu, Goyang, 10408 , Republic of Korea

2. Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy , 323, Ilsan-ro, Ilsandong-gu, Goyang, 10408 , Republic of Korea

Abstract

Abstract Cancer, recognized as a primary cause of death worldwide, has profound health implications and incurs a substantial social burden. Numerous efforts have been made to develop cancer treatments, among which anticancer peptides (ACPs) are garnering recognition for their potential applications. While ACP screening is time-consuming and costly, in silico prediction tools provide a way to overcome these challenges. Herein, we present a deep learning model designed to screen ACPs using peptide sequences only. A contrastive learning technique was applied to enhance model performance, yielding better results than a model trained solely on binary classification loss. Furthermore, two independent encoders were employed as a replacement for data augmentation, a technique commonly used in contrastive learning. Our model achieved superior performance on five of six benchmark datasets against previous state-of-the-art models. As prediction tools advance, the potential in peptide-based cancer therapeutics increases, promising a brighter future for oncology research and patient care.

Funder

National Research Foundation of Korea

Ministry of Education

Korean Government

Ministry of Science and ICT

National Cancer Center

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3