Comprehensive single-cell RNA-seq analysis using deep interpretable generative modeling guided by biological hierarchy knowledge

Author:

Chen Hegang1ORCID,Lu Yuyin1,Dai Zhiming1ORCID,Yang Yuedong1,Li Qing2,Rao Yanghui1

Affiliation:

1. School of Computer Science and Engineering, Sun Yat-sen University, 132 Waihuan East Road, Guangzhou University Town, 510006 , Guangzhou, China

2. Department of Computing, The Hong Kong Polytechnic University , PQ806, Mong Man Wai Building, 999077, Hong Kong SAR

Abstract

Abstract Recent advances in microfluidics and sequencing technologies allow researchers to explore cellular heterogeneity at single-cell resolution. In recent years, deep learning frameworks, such as generative models, have brought great changes to the analysis of transcriptomic data. Nevertheless, relying on the potential space of these generative models alone is insufficient to generate biological explanations. In addition, most of the previous work based on generative models is limited to shallow neural networks with one to three layers of latent variables, which may limit the capabilities of the models. Here, we propose a deep interpretable generative model called d-scIGM for single-cell data analysis. d-scIGM combines sawtooth connectivity techniques and residual networks, thereby constructing a deep generative framework. In addition, d-scIGM incorporates hierarchical prior knowledge of biological domains to enhance the interpretability of the model. We show that d-scIGM achieves excellent performance in a variety of fundamental tasks, including clustering, visualization, and pseudo-temporal inference. Through topic pathway studies, we found that d-scIGM-learned topics are better enriched for biologically meaningful pathways compared to the baseline models. Furthermore, the analysis of drug response data shows that d-scIGM can capture drug response patterns in large-scale experiments, which provides a promising way to elucidate the underlying biological mechanisms. Lastly, in the melanoma dataset, d-scIGM accurately identified different cell types and revealed multiple melanin-related driver genes and key pathways, which are critical for understanding disease mechanisms and drug development.

Funder

National Natural Science Foundation of China

Guangdong Philosophy and Social Sciences

Hong Kong Research Grants Council

General Research Fund

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3