Epigenetic processes involved in response to pesticide exposure in human populations: a systematic review and meta-analysis

Author:

Rohr Paula1ORCID,Karen Shimoyama1ORCID,Francisco Luiza Flávia Veiga1ORCID,Oliveira Marco Antônio1,Santos Neto Martins Fidelis dos1,Silveira Henrique C S12ORCID

Affiliation:

1. Molecular Oncology Research Center, Barretos Cancer Hospital , Rua Antenor Duarte Vilela, 1331, B. Dr. Paulo Prata, Barretos, SP 14784-390, Brazil

2. Campus São Paulo, University of Anhanguera , São Paulo, SP 04119-901, Brazil

Abstract

Abstract In recent decades, the use of pesticides in agriculture has increased dramatically. This has resulted in these substances being widely dispersed in the environment, contaminating both exposed workers and communities living near agricultural areas and via contaminated foodstuffs. In addition to acute poisoning, chronic exposure to pesticides can lead to molecular changes that are becoming better understood. Therefore, the aim of this study was to assess, through a systematic review of the literature, what epigenetic alterations are associated with pesticide exposure. We performed a systematic review and meta-analysis including case-control, cohort and cross-sectional observational epidemiological studies to verify the epigenetic changes, such as DNA methylation, histone modification and differential microRNA expression, in humans who had been exposed to any type of pesticide. Articles published between the years 2005 and 2020 were collected. Two different reviewers performed a blind selection of the studies using the Rayyan QCRI software. Post-completion, the data of selected articles were extracted and analyzed. Most of the 28 articles included evaluated global DNA methylation levels, and the most commonly reported epigenetic modification in response to pesticide exposure was global DNA hypomethylation. Meta-analysis revealed a significant negative correlation between Alu methylation levels and β-hexachlorocyclohexane, p,p'-dichlorodiphenyldichloroethane and p,p′-dichlorodiphenylethylene levels. In addition, some specific genes were reported to be hypermethylated in promoter regions, such as CDKN2AIGF2, WRAP53α and CDH1, while CDKN2B and H19 were hypomethylated due to pesticide exposure. The expression of microRNAs was also altered in response to pesticides, as miR-223, miR-518d-3p, miR-597, miR-517b and miR-133b that are associated with many human diseases. Therefore, this study provides evidence that pesticide exposure could lead to epigenetic modifications, possibly altering global and gene-specific methylation levels, epigenome-wide methylation and microRNA differential expression.

Funder

São Paulo Science Foundation

National Council for Scientific and Technological Development

Fapesp

Ministry of Health of Brazil

Barretos Cancer Hospital, Brazil

Ministry of Health

Publisher

Oxford University Press (OUP)

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3