Affiliation:
1. School of Intelligent Engineering, Shaoguan University , Shaoguan 512005 , China
2. School of Mechanical and Automotive Engineering South China University of Technology Guangzhou 510640 , China
Abstract
Abstract
This study aims to solve path planning of intelligent vehicles in self-driving. In this study, an improved path planning method combining constraints of environment and vehicle is proposed. The algorithm designs a reasonable path cost function, then uses heuristic guided search strategy to improve the speed and quality of path planning, and finally generates smooth and continuous curvature paths based on the path post-processing method based on the requirements of path smoothness. simulation test show that compared with the basic RRT, RRT-connect and RRT* algorithms, the path length of the proposed algorithm can be reduced by 19.7%, 29.3% and 1% respectively and the maximum planned path curvature of the proposed algorithm is 0.0796 m-1 and 0.1512 m-1 respectively under the condition of a small amount of planning time. The algorithm can plan the more suitable driving path for intelligent vehicle in complex environment.
Publisher
Oxford University Press (OUP)
Subject
Engineering (miscellaneous),Safety, Risk, Reliability and Quality,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献