Performance of Vehicle-mounted Anemometer under Crosswind—Simulation and Experiment

Author:

Sun Bo123,Chen Guang123,Chen Jun4,Li Xiao-Bai123ORCID,Tang Ming-Zan123,Zhong Mu123

Affiliation:

1. Key Laboratory of Traffic Safety on Track (Central South University) , Ministry of Education, Changsha, 410075 , China

2. Joint International Research Laboratory of Key Technology for Rail Traffic Safety , Changsha, 410075 , China

3. National & Local Joint Engineering Research Centre of Safety Technology for Rail Vehicle , Changsha, 410075 , China

4. China Railway Urumqi Group Co., Ltd. , Urumqi, 830000 , China

Abstract

Abstract Environmental wind measurements are essential for ensuring the operational safety of rail vehicles. In our previous work, an anemometer that can be mounted on the top of a train to achieve real-time measurements of wind speed and direction was proposed based on the pressure distributions around the cylindrical anemometer. However, the flow field on the top of the train is significantly influenced by the train; thus, the measured data might differ from the actual environmental wind parameters, particularly when trains are subjected to windbreak walls. In this study, simulations considering flow fields around trains installed with the proposed anemometer were conducted, and an improved delayed detached eddy simulation approach was adopted. Through simulations, the flow field at the top of the train was analysed, and the aerodynamic characteristics of the anemometer were investigated. Accordingly, relationships between the measured wind characteristics and environmental wind characteristics are presented under various situations herein. Field experiments were performed for the proposed anemometer installed on a certain type of high-speed train along the Nanjiang Railway in China. The results obtained from both the numerical and experimental studies show that the proposed method has high accuracy for measuring environmental wind speed and direction when mounted on the top of a train.

Publisher

Oxford University Press (OUP)

Subject

Engineering (miscellaneous),Safety, Risk, Reliability and Quality,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3