Medroxyprogesterone Acetate Elevation of Nm23-H1 Metastasis Suppressor Expression in Hormone Receptor–Negative Breast Cancer

Author:

Palmieri Diane1,Halverson Douglas O.1,Ouatas Taoufik1,Horak Christine E.1,Salerno Massimiliano1,Johnson Jennifer1,Figg W. Douglas1,Hollingshead Melinda1,Hursting Stephen1,Berrigan David1,Steinberg Seth M.1,Merino Maria J.1,Steeg Patricia S.1

Affiliation:

1. Affiliations of authors: Women's Cancers Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD (DP, DOH, TO, CEH, MS, PSS); Laboratory Animal Sciences Program, SAIC, Frederick, MD (JJ); Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD (WDF); Developmental Therapeutics Program, National Cancer Institute,

Abstract

Abstract Background: Reestablishment of metastasis suppressor gene expression may constitute a therapeutic strategy for high-risk breast cancer patients. We previously showed that medroxyprogesterone acetate (MPA), a progestin that has been tested as treatment for advanced breast cancer, elevates expression of the Nm23-H1 metastasis suppressor gene in hormone receptor–negative metastatic human breast carcinoma cell lines in vitro via a glucocorticoid receptor–based mechanism. Here, we tested whether MPA treatment inhibits metastatic colonization of a hormone receptor–negative breast cancer cell line in vivo. Methods: We tested the soft-agar colony-forming efficiency of untransfected MDA-MB-231T human breast carcinoma cells and MDA-MB-231T cells transfected with antisense Nm23-H1 in the presence and absence of MPA. Pharmacokinetic studies were used to establish dose and injection schedules that led to MPA serum levels in mice similar to those achievable in humans. For in vivo studies, nude mice were injected intravenously with MDA-MB-231T cells. After 4 weeks, mice were randomized to control or MPA arms. Endpoints included incidence, number, and size of gross pulmonary metastases; Nm23-H1 protein expression in gross metastases; and side effects. All statistical tests were two-sided. Results: MPA reduced colony formation of MDA-MB-231T cells by 40%–50% but had no effect on colony formation of Nm23-H1 antisense transfectants. Metastases developed in 100% (95% confidence interval [CI] = 78% to 100% and 77% to 100%, respectively) of control mice injected with MDA-MB-231T cells. In two independent experiments, only 73% (95% CI = 45% to 92%) and 64% (95% CI = 35% to 87%) of mice injected with 2 mg of MPA developed metastases. Mice injected with 2 mg of MPA showed reductions in the mean numbers, per mouse, of all metastases and of large (>3 mm) metastases ( P = .04 and .013, respectively). Nm23-H1 was expressed at high levels in 43% of pulmonary metastases in MPA-treated mice but only 13% of metastases in untreated mice. Mice receiving at least 1-mg doses of MPA gained more weight than control-treated mice but exhibited no bone density alterations or abnormal mammary fat pad histology. Conclusion: Our preclinical results show that MPA appears to elevate Nm23-H1 metastasis suppressor gene expression, thereby reducing metastatic colonization. The data suggest a new use for an old agent in a molecularly defined subset of breast cancer patients.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3