Abstract
Abstract
Background
Cryolipolysis nonsurgically targets and reduces subcutaneous fat through controlled cooling of skin and underlying fatty tissue. Although skin changes after cryolipolysis treatment have been observed clinically, the mechanisms by which these occur are not well understood.
Objectives
The aim of this study was to investigate the expression of heat shock protein 70 (HSP70) in the epidermal and dermal layers of human skin following cryolipolysis treatment.
Methods
Subjects (N = 11; average age, 41.8 years; average BMI, 29.59 kg/m2) were recruited to receive cryolipolysis treatment with a vacuum cooling cup applicator (−11°C/35 minutes) prior to abdominoplasty surgery. Treated and untreated abdominal tissue samples were harvested immediately after surgery (average follow-up, 15 days; range, 3 days to 5 weeks). Immunohistochemistry for HSP70 was performed on all samples. Slides were digitized and quantified in epidermal and dermal layers.
Results
There was higher epidermal and dermal HSP70 expression in cryolipolysis-treated pre-abdominoplasty samples vs untreated samples. There was a 1.32-fold increase of HSP70 expression in the epidermis (P < .05) and a 1.92-fold increase in the dermis (P < .04) compared with untreated samples.
Conclusions
We found significant induction of HSP70 after cryolipolysis treatment in epidermal and dermal layers. HSP70 has potential therapeutic benefits and is recognized to have a role in skin protection and adaption after thermal stress. Although cryolipolysis is popular for subcutaneous fat reduction, cryolipolytic HSP induction in the skin may prove valuable for additional therapeutic applications, including skin wound healing, remodeling, rejuvenation, and photoprotection.
Level of Evidence: 4
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献