On large values of L(σ,χ)

Author:

Aistleitner Christoph1,Mahatab Kamalakshya2,Munsch Marc1,Peyrot Alexandre3

Affiliation:

1. Institute of Analysis and Number Theory, TU Graz, Steyrergasse 30, Graz, Austria

2. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway

3. Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford CA

Abstract

Abstract In recent years, a variant of the resonance method was developed which allowed to obtain improved Ω-results for the Riemann zeta function along vertical lines in the critical strip. In the present paper, we show how this method can be adapted to prove the existence of large values of |L(σ,χ)| in the range σ∈(1/2,1], and to estimate the proportion of characters for which |L(σ,χ)| is of such a large order. More precisely, for every fixed σ∈(1/2,1), we show that for all sufficiently large q, there is a non-principal character χ(modq) such that log|L(σ,χ)|≥C(σ)(logq)1−σ(loglogq)−σ. In the case σ=1, we show that there is a non-principal character χ(modq) for which |L(1,χ)|≥eγ(log2q+log3q−C). In both cases, our results essentially match the prediction for the actual order of such extreme values, based on probabilistic models.

Funder

Austrian Science Fund

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extreme Values of Dirichlet L-Functions At Critical Points of the Zeta Function;The Quarterly Journal of Mathematics;2024-07-04

2. Large values of quadratic Dirichlet -functions over monic irreducible polynomial in _{}[];Proceedings of the American Mathematical Society;2024-06-14

3. Extreme values of Dirichlet polynomials with multiplicative coefficients;Journal of Number Theory;2024-05

4. Extreme values of derivatives of zeta and L‐functions;Bulletin of the London Mathematical Society;2023-09-11

5. Joint extreme values of L-functions;Mathematische Zeitschrift;2022-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3