Affiliation:
1. Institute of Analysis and Number Theory, TU Graz, Steyrergasse 30, Graz, Austria
2. Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
3. Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford CA
Abstract
Abstract
In recent years, a variant of the resonance method was developed which allowed to obtain improved Ω-results for the Riemann zeta function along vertical lines in the critical strip. In the present paper, we show how this method can be adapted to prove the existence of large values of |L(σ,χ)| in the range σ∈(1/2,1], and to estimate the proportion of characters for which |L(σ,χ)| is of such a large order. More precisely, for every fixed σ∈(1/2,1), we show that for all sufficiently large q, there is a non-principal character χ(modq) such that log|L(σ,χ)|≥C(σ)(logq)1−σ(loglogq)−σ. In the case σ=1, we show that there is a non-principal character χ(modq) for which |L(1,χ)|≥eγ(log2q+log3q−C). In both cases, our results essentially match the prediction for the actual order of such extreme values, based on probabilistic models.
Funder
Austrian Science Fund
Swiss National Science Foundation
Publisher
Oxford University Press (OUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献