Singmaster’s Conjecture In The Interior Of Pascal’s Triangle

Author:

Matomäki Kaisa12345,Radziwiłł Maksym12345,Shao Xuancheng12345,Tao Terence12345,Teräväinen Joni12345

Affiliation:

1. Department of Mathematics and Statistics, University of Turku , Turku 20014, Finland

2. Department of Mathematics, Caltech , 1200 E California Blvd, Pasadena, CA 91125, USA

3. Department of Mathematics, University of Kentucky , 715 Patterson Office Tower, Lexington, KY 40506, USA

4. Department of Mathematics, UCLA , 405 Hilgard Ave, Los Angeles, CA 90095, USA

5. Mathematical Institute, University of Oxford , Woodstock Road, Oxford OX2 6GG, UK

Abstract

Abstract Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $t \geq 2$, the number of solutions to the equation $\binom{n}{m} = t$ for natural numbers $1 \leq m \lt n$ is bounded. In this paper we establish this result in the interior region $\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $(n)_m = t$, where $(n)_m := n(n-1) \dots (n-m+1)$ denotes the falling factorial.

Funder

Academy of Finland grant

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference29 articles.

1. On the number of times an integer occurs as a binomial coefficient;Abbott;Amer. Math. Monthly,1974

2. Solution of a problem on figurate numbers;Avanesov;Acta Arith.,1966

3. Binomial collisions and near collisions;Blokhuis;Integers,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3