Generating Infinite Digraphs by Derangements

Author:

Horsley Daniel1,Iradmusa Moharram2,Praeger Cheryl E3

Affiliation:

1. School of Mathematics, Monash University, Wellington Rd, Clayton, VIC 3800, Australia

2. Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

3. Centre for the Mathematics of Symmetry and Computation, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia

Abstract

Abstract A set $\mathcal{S}$ of derangements (fixed-point-free permutations) of a set V generates a digraph with vertex set V and arcs $(x,x^{\,\sigma})$ for x ∈ V and $\sigma\in\mathcal{S}$. We address the problem of characterizing those infinite (simple loopless) digraphs which are generated by finite sets of derangements. The case of finite digraphs was addressed in an earlier work by the second and third authors. A criterion is given for derangement generation which resembles the criterion given by De Bruijn and Erdős for vertex colourings of graphs in that the property for an infinite digraph is determined by properties of its finite sub-digraphs. The derangement generation property for a digraph is linked with the existence of a finite 1-factor cover for an associated bipartite (undirected) graph.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference10 articles.

1. Excessive factorizations of regular graphs;Bonisoli,2007

2. A colour problem for infinite graphs and a problem in the theory of relations;de Bruijn;Nederl. Akad. Wetensch. Proc. Ser. A.,1951

3. Excessive factorizations of bipartite multigraphs;Cariolaro;Discrete Appl. Math.,2010

4. Gráok és alkalmazásuk a determinánsok Žs a halmazok elméleére;Kőnig;Matematikai és Természettudományi Értesítő,1916

5. On representatives of subsets;Hall;J. London Math. Soc.,1935

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3