Remarks On Ornstein’s Non-Inequality In ℝ2×2

Author:

Faraco Daniel1,Guerra André2

Affiliation:

1. Departamento de Matemáticas, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain

2. University of Oxford, Mathematical Institute, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, UK

Abstract

Abstract We give a very concise proof of Ornstein’s L1 non-inequality for first- and second-order operators in two dimensions. The proof just needs a two-dimensional laminate supported on three points.

Funder

University Teaching Staff

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference27 articles.

1. Convex integration and the Lp theory of elliptic equations;Astala;Annali della Scuola Normale Superiore di Pisa - Classe di Scienze,2008

2. Null Lagrangians, weak continuity, and variational problems of arbitrary order;Ball;J. Funct. Anal.,1981

3. On the equation $\operatorname{div}Y=f$ and application to control of phases;Bourgain;J. Am. Math. Soc.,2002

4. On the existence of certain singular integrals;Calderon;Acta Math.,1952

5. A new approach to counterexamples to L1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions;Conti;Arch. Ration. Mech. Anal.,2005

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boundary ellipticity and limiting L1-estimates on halfspaces;Advances in Mathematics;2024-03

2. On the complex constant rank condition and inequalities for differential operators;Nonlinear Analysis;2024-02

3. Optimal incompatible Korn–Maxwell–Sobolev inequalities in all dimensions;Calculus of Variations and Partial Differential Equations;2023-06-29

4. On symmetric div-quasiconvex hulls and divsym-free $L^\infty$-truncations;Annales de l'Institut Henri Poincaré C, Analyse non linéaire;2022-12-08

5. Quasiconvexity, Null Lagrangians, and Hardy Space Integrability Under Constant Rank Constraints;Archive for Rational Mechanics and Analysis;2022-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3