On Artin’s Primitive Root Conjecture for Function Fields over 𝔽q

Author:

Hochfilzer Leonhard1ORCID,Waxman Ezra2ORCID

Affiliation:

1. Department of Mathematics, Pennsylvania State University , 107 McAllister Building, State College, PA 16802, USA

2. University of Haifa, Department of Mathematics,  199 Aba Khoushy Ave., Mt. Carmel, Haifa 3103301, Israel

Abstract

ABSTRACT In 1927, E. Artin proposed a conjecture for the natural density of primes p for which g generates $(\mathbb{Z}/p\mathbb{Z})^\times$. By carefully observing numerical deviations from Artin’s originally predicted asymptotic, Derrick and Emma Lehmer (1957) identified the need for an additional correction factor, leading to a modified conjecture which was eventually proved to be correct by Hooley (1967) under the assumption of the generalized Riemann hypothesis. An appropriate analogue of Artin’s primitive root conjecture may moreover be formulated for an algebraic function field K of r variables over $\mathbb{F}_{q}$. Relying on a soon to be established theorem of Weil (1948), Bilharz (1937) provided a proof in the particular case that K is a global function field (that is, r = 1), which is correct under the assumption that $g \in K$ is a geometric element. Under the same assumptions, Pappalardi and Shparlinski (1995) established a quantitative version of Bilharz’s result. In this paper we build upon these works by both generalizing to function fields in r variables over $\mathbb{F}_{q}$ and removing the assumption that $g \in K$ is geometric, thereby completing a proof of Artin’s primitive root conjecture for function fields over $\mathbb{F}_{q}$. In doing so, we moreover identify an interesting correction factor which emerges when g is not geometric. A crucial feature of our work is an exponential sum estimate over varieties that we derive from Weil’s Theorem.

Publisher

Oxford University Press (OUP)

Reference26 articles.

1. Primdivisoren mit vorgegebener Primitivwurzel;Bilharz;Math. Ann.,1937

2. On primitive roots of tori: the case of function fields;Chen;Math. Z.,2003

3. On extending Artin’s conjecture to composite moduli in function fields;Eisenstein;J. Number Theory,2020

4. Étude locale des schémas et des morphismes de schémas IV;de géométrie algébrique;Inst. Hautes ÉTudes Sci. Publ. Math.,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3