Partial Regularity for Local Minimizers of Variational Integrals With Lower-Order Terms

Author:

Campos Cordero Judith1

Affiliation:

1. Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, C.P. 04510, Ciudad de México, México

Abstract

Abstract We consider functionals of the form $$\begin{equation*} \mathcal{F}(u):=\int_\Omega\!F(x,u,\nabla u)\,\mathrm{d} x, \end{equation*}$$ where $\Omega\subseteq\mathbb{R}^n$ is open and bounded. The integrand $F\colon\Omega\times\mathbb{R}^N\times\mathbb{R}^{N\times n}\to\mathbb{R}$ is assumed to satisfy the classical assumptions of a power p-growth and the corresponding strong quasiconvexity. In addition, F is Hölder continuous with exponent $2\beta\in(0,1)$ in its first two variables uniformly with respect to the third variable and bounded below by a quasiconvex function depending only on $z\in\mathbb{R}^{N\times n}$. We establish that strong local minimizers of $\mathcal{F}$ are of class $\operatorname{C}^{1,\beta}$ in an open subset $\Omega_0\subseteq\Omega$ with $\mathcal{L}^n(\Omega\setminus\Omega_0)=0$. This partial regularity also holds for a certain class of weak local minimizers at which the second variation is strongly positive and satisfying a bounded mean oscillation (BMO) smallness condition. This extends the partial regularity result for local minimizers by Kristensen and Taheri (2003) to the case where the integrand depends also on u. Furthermore, we provide a direct strategy for this result, in contrast to the blow-up argument used for the case of homogeneous integrands.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3