Motivic Geometry of two-Loop Feynman Integrals

Author:

Doran Charles F123,Harder Andrew4ORCID,Vanhove Pierre5,Pichon-Pharabod Eric5

Affiliation:

1. Department of Mathematical and Statistical Sciences, University of Alberta , CAB 632, Edmonton, AB TG 2G1, Canada

2. Bard College , Annandale-on-Hudson, NY 12571, USA

3. Center of Mathematical Sciences and Applications, Harvard University , 20 Garden Street, Cambridge, MA 02138, USA

4. Department of Mathematics, Lehigh University , Chandler–Ullmann Hall, 17 Memorial Drive E., Bethlehem, PA 18015, USA

5. Institut de Physique Théorique, Université Paris-Saclay , CEA, CNRS, F-91191 Gif-sur-Yvette Cedex, France ; Université Paris-Saclay, Inria, 91120 Palaiseau, France

Abstract

Abstract We study the geometry and Hodge theory of the cubic hypersurfaces attached to two-loop Feynman integrals for generic physical parameters. We show that the Hodge structure attached to planar two-loop Feynman graphs decomposes into mixed Tate pieces and the Hodge structures of families of hyperelliptic, elliptic or rational curves depending on the space-time dimension. For two-loop graphs with a small number of edges, we give more precise results. In particular, we recover a result of Bloch (Double box motive. SIGMA 2021;17,048) that in the well-known double-box example, there is an underlying family of elliptic curves, and we give a concrete description of these elliptic curves. We show that the motive for the non-planar two-loop tardigrade graph is that of a K3 surface. In an appendix by Eric Pichon-Pharabod, we argue via high-precision numerical computations that the Picard number of this K3 surface is generically 11 and we compute the expected lattice polarization. Lastly, we show that generic members of the ice cream cone family of graph hypersurfaces correspond to the pairs of sunset Calabi–Yau varieties.

Publisher

Oxford University Press (OUP)

Reference61 articles.

1. Feynman motives of banana graphs;Aluffi;Commun. Number Theory Phys.,2009

2. Choice of invariant variables for the “Many-Point” functions;Asribekov;J. Exp. Theor. Phys.,1962

3. Matroids motives, and a conjecture of Kontsevich;Belkale;Duke Math. J.,2003

4. Double box motive;Bloch;SIGMA,2021

5. On motives associated to graph polynomials;Bloch;Commun. Math Phys.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3