Boundedness of the dyadic maximal function on graded Lie groups

Author:

Cardona DuvÁnORCID,Delgado Julio123,Ruzhansky Michael123

Affiliation:

1. Department of Mathematics: Analysis, Logic and Discrete Mathematics , Ghent University, Ghent 9000, Belgium

2. Departmento de Matematicas, Universidad del Valle, Cali 760000, Colombia

3. School of Mathematical Sciences , Queen Mary University of London, UK

Abstract

Abstract Let $1 \lt p\leq \infty$ and let $n\geq 2.$ It was proved independently by Calderón, Coifman and Weiss that the dyadic maximal function $$ \mathcal{M}^{d\sigma}_Df(x)=\sup_{j\in\mathbb{Z}}\left|\smallint\limits_{\mathbb{S}^{n-1}}f(x-2^jy)d\sigma(y)\right| \\[4pt] $$ is a bounded operator on $L^p(\mathbb{R}^n)$, where $d\sigma(y)$ is the surface measure on $\mathbb{S}^{n-1}.$ In this paper we prove an analogue of this result on arbitrary graded Lie groups. More precisely, to any finite Borel measure $d\sigma$ with compact support on a graded Lie group $G,$ we associate the corresponding dyadic maximal function $\mathcal{M}_D^{d\sigma}$ using the homogeneous structure of the group. Then, we prove a criterion in terms of the order (at zero and at infinity) of the group Fourier transform $\widehat{d\sigma}$ of $d\sigma$ with respect to a fixed Rockland operator $\mathcal{R}$ on G that assures the boundedness of $\mathcal{M}_D^{d\sigma}$ on $L^p(G)$ for all $1 \lt p\leq \infty.$

Publisher

Oxford University Press (OUP)

Reference37 articles.

1. On the maximal function associated to the spherical means on the Heisenberg group;Bagchi;New York J. Math.,2021

2. The circular maximal operator on Heisenberg radial functions;Beltran;Ann. Sc. Norm. Super. Pisa Cl. Sci.

3. Averages in the plane over convex curves and maximal operators;Bourgain;J. Anal. Math.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3