Using queueing models as a decision support tool in allocating point-of-care HIV viral load testing machines in Kisumu County, Kenya

Author:

Wang YinshengORCID,Wagner Anjuli D12ORCID,Liu Shan2,Kingwara Leonard3,Oyaro Patrick4,Brown Everlyne5,Karauki Enerikah5,Yongo Nashon5,Bowen Nancy3,Kiiru John3,Hassan Shukri1,Patel Rena167

Affiliation:

1. Department of Global Health, University of Washington , Seattle, Washington 98195, USA

2. Department of Industrial and Systems Engineering, University of Washington , Seattle, Washington 98195, USA

3. National Public Health Laboratory , Nairobi 00100, Kenya

4. LVCT Health , Mombasa 80100, Kenya

5. UW Kenya , Nairobi 00100, Kenya

6. Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington , Seattle 98195, USA

7. Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama 35294, USA

Abstract

Abstract Point-of-care (POC) technologies—including HIV viral load (VL) monitoring—are expanding globally, including in resource-limited settings. Modelling could allow decision-makers to consider the optimal strategy(ies) to maximize coverage and access, minimize turnaround time (TAT) and minimize cost with limited machines. Informed by formative qualitative focus group discussions with stakeholders focused on model inputs, outputs and format, we created an optimization model incorporating queueing theory and solved it using integer programming methods to reflect HIV VL monitoring in Kisumu County, Kenya. We modelled three scenarios for sample processing: (1) centralized laboratories only, (2) centralized labs with 7 existing POC ‘hub’ facilities and (3) centralized labs with 7 existing and 1–7 new ‘hub’ facilities. We calculated total TAT using the existing referral network for scenario 1 and solved for the optimal referral network by minimizing TAT for scenarios 2 and 3. We conducted one-way sensitivity analyses, including distributional fairness in each sub-county. Through two focus groups, stakeholders endorsed the provisionally selected model inputs, outputs and format with modifications incorporated during model-building. In all three scenarios, the largest component of TAT was time spent at a facility awaiting sample batching and transport (scenarios 1–3: 78.7%, 89.9%, 91.8%) and waiting time at the testing site (18.7%, 8.7%, 7.5%); transportation time contributed minimally to overall time (2.6%, 1.3%, 0.7%). In scenario 1, the average TAT was 39.8 h (SD: 2.9), with 1077 h that samples spent cumulatively in the VL processing system. In scenario 2, the average TAT decreased to 33.8 h (SD: 4.8), totalling 430 h. In scenario 3, the average TAT decreased nearly monotonically with each new machine to 31.1 h (SD: 8.4) and 346 total hours. Frequency of sample batching and processing rate most impacted TAT, and inclusion of distributional fairness minimally impacted TAT. In conclusion, a stakeholder-informed resource allocation model identified optimal POC VL hub allocations and referral networks. Using existing—and adding new—POC machines could markedly decrease TAT, as could operational changes.

Funder

National Institute of Mental Health

Publisher

Oxford University Press (OUP)

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3