‘Do you trust those data?’—a mixed-methods study assessing the quality of data reported by community health workers in Kenya and Malawi

Author:

Regeru Regeru Njoroge1,Chikaphupha Kingsley2,Bruce Kumar Meghan3ORCID,Otiso Lilian1,Taegtmeyer Miriam3

Affiliation:

1. Research Division, LVCT Health, PO Box 19835-00202, Nairobi, Kenya

2. REACH Trust, Box 1597, Lilongwe, Malawi

3. Department of International Public Health, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK

Abstract

Abstract High-quality data are essential to monitor and evaluate community health worker (CHW) programmes in low- and middle-income countries striving towards universal health coverage. This mixed-methods study was conducted in two purposively selected districts in Kenya (where volunteers collect data) and two in Malawi (where health surveillance assistants are a paid cadre). We calculated data verification ratios to quantify reporting consistency for selected health indicators over 3 months across 339 registers and 72 summary reports. These indicators are related to antenatal care, skilled delivery, immunization, growth monitoring and nutrition in Kenya; new cases, danger signs, drug stock-outs and under-five mortality in Malawi. We used qualitative methods to explore perceptions of data quality with 52 CHWs in Kenya, 83 CHWs in Malawi and 36 key informants. We analysed these data using a framework approach assisted by NVivo11. We found that only 15% of data were reported consistently between CHWs and their supervisors in both contexts. We found remarkable similarities in our qualitative data in Kenya and Malawi. Barriers to data quality mirrored those previously reported elsewhere including unavailability of data collection and reporting tools; inadequate training and supervision; lack of quality control mechanisms; and inadequate register completion. In addition, we found that CHWs experienced tensions at the interface between the formal health system and the communities they served, mediated by the social and cultural expectations of their role. These issues affected data quality in both contexts with reports of difficulties in negotiating gender norms leading to skipping sensitive questions when completing registers; fabrication of data; lack of trust in the data; and limited use of data for decision-making. While routine systems need strengthening, these more nuanced issues also need addressing. This is backed up by our finding of the high value placed on supportive supervision as an enabler of data quality.

Funder

European Union Seventh Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3