Knockin mouse model of the human CFL2 p.A35T mutation results in a unique splicing defect and severe myopathy phenotype

Author:

Rosen Samantha M123,Joshi Mugdha1,Hitt Talia1,Beggs Alan H23,Agrawal Pankaj B123

Affiliation:

1. Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA

2. Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA

3. The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA

Abstract

Abstract Cofilin-2 is an actin-binding protein that is predominantly expressed in skeletal and cardiac muscles and belongs to the AC group of proteins, which includes cofilin-1 and destrin. In humans, cofilin-2 (CFL2) mutations have been associated with congenital myopathies that include nemaline and myofibrillar myopathy. To understand the pathogenicity of the human CFL2 mutation, p.A35T, that first linked cofilin-2 with the human disease, we created a knock-in mouse model. The Cfl2A35T/A35T (KI) mice were indistinguishable from their wild-type littermates at birth, but they rapidly worsened and died by postnatal day 9. The phenotypic, histopathologic and molecular findings mimicked the constitutive Cfl2-knockout (KO) mice described previously, including sarcomeric disruption and actin accumulations in skeletal muscles and negligible amounts of cofilin-2 protein. In addition, KI mice demonstrated a marked reduction in Cfl2 mRNA levels in various tissues including skeletal muscles. Further investigation revealed evidence of alternative splicing with the presence of two alternate transcripts of smaller size. These alternate transcripts were expressed at very low levels in the wild-type mice and were significantly upregulated in the mutant mice, indicating that pre-translational splicing defects may be a critical component of the disease mechanism associated with the mutation. Evidence of reduced expression of the full-length CFL2 transcript was also observed in the muscle biopsy sample of the patient with p.A35T mutation.

Funder

National Institute of Health

National Institute of Arthritis and Musculoskeletal Diseases

National Institute of Child Health and Human Development

Muscular Dystrophy Association

Intellectual and Developmental Disabilities Research Center

NICHD

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3