Prkar1a haploinsufficiency ameliorates the growth hormone excess phenotype in Aip-deficient mice

Author:

Schernthaner-Reiter Marie Helene12ORCID,Trivellin Giampaolo13,Roetzer Thomas4,Hainfellner Johannes A4,Starost Matthew F5,Stratakis Constantine A1

Affiliation:

1. Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA

2. Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria

3. Laboratory of Cellular and Molecular Endocrinology and Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center – IRCCS, 20089 Rozzano, Italy

4. Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria

5. Office of Research Services (ORS), Division of Veterinary Resources (DVR), Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA

Abstract

Abstract Mutations of the regulatory subunit (PRKAR1A) of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), leading to activation of the PKA pathway, are the genetic cause of Carney complex which is frequently accompanied by somatotroph tumors. Aryl hydrocarbon receptor-interacting protein (AIP) mutations lead to somatotroph tumorigenesis in mice and humans. The mechanisms of AIP-dependent pituitary tumorigenesis are still under investigation and evidence points to a connection between the AIP and PKA pathways. In this study, we explore the combined effects of Aip and Prkar1a deficiency on mouse phenotype and, specifically, pituitary histopathology. Aip+/− mice were compared with double heterozygous Aip+/−, Prkar1a+/− mice. The phenotype (including histopathology and serological studies) was recorded at 3, 6, 9 and 12 months of age. Detailed pituitary histological and immunohistochemical studies were performed at 12 months. Twelve-month old Aip+/− mice demonstrated phenotypic and biochemical evidence of GH excess including significantly elevated insulin-like growth factor 1 levels, larger weight and body length, higher hemoglobin and cholesterol levels and a higher frequency of growth plate thickening in comparison to Aip+/, Prkar1a+/− mice. Pituitary histopathology did not uncover any pituitary adenomas or somatotroph hyperplasia in either group. These results demonstrate a slow progression from elevated GH release to the formation of overt somatotropinomas in Aip+/− mice; the acromegalic phenotype of these mice is surprisingly ameliorated in Aip+/−, Prkar1a+/− mice. This highlights the complexities of interaction between the AIP and PKA pathway. Specifically targeting GH secretion rather than somatotroph proliferation may be an advantage in the medical treatment of AIP-dependent human acromegaly.

Funder

Intramural Research Program

NICHD

National Institutes of Health

Austrian Science Fund

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3