Loss of sarcospan exacerbates pathology in mdx mice, but does not affect utrophin amelioration of disease

Author:

Gibbs Elizabeth M1,McCourt Jackie L1,Shin Kara M1,Hammond Katherine G1,Marshall Jamie L1,Crosbie Rachelle H123

Affiliation:

1. Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA

2. Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

3. Molecular Biology Institute, University of California, Los Angeles, CA, USA

Abstract

Abstract The dystrophin–glycoprotein complex (DGC) is a membrane adhesion complex that provides structural stability at the sarcolemma by linking the myocyte’s internal cytoskeleton and external extracellular matrix. In Duchenne muscular dystrophy (DMD), the absence of dystrophin leads to the loss of the DGC at the sarcolemma, resulting in sarcolemmal instability and progressive muscle damage. Utrophin (UTRN), an autosomal homolog of dystrophin, is upregulated in dystrophic muscle and partially compensates for the loss of dystrophin in muscle from patients with DMD. Here, we examine the interaction between Utr and sarcospan (SSPN), a small transmembrane protein that is a core component of both UTRN–glycoprotein complex (UGC) and DGC. We show that additional loss of SSPN causes an earlier onset of disease in dystrophin-deficient mdx mice by reducing the expression of the UGC at the sarcolemma. In order to further evaluate the role of SSPN in maintaining therapeutic levels of Utr at the sarcolemma, we tested the effect of Utr transgenic overexpression in mdx mice lacking SSPN (mdx:SSPN −/−:Utr-Tg). We found that overexpression of Utr restored SSPN to the sarcolemma in mdx muscle but that the ablation of SSPN in mdx muscle reduced Utr at the membrane. Nevertheless, Utr overexpression reduced central nucleation and improved grip strength in both lines. These findings demonstrate that high levels of Utr transgenic overexpression ameliorate the mdx phenotype independently of SSPN expression but that loss of SSPN may impair Utr-based mechanisms that rely on lower levels of Utr protein.

Funder

Edith Hyde Fellowship

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3