Seasonal variation in molecular and physiological stress markers in Asian elephants

Author:

Ukonaho Susanna1,Berger Vérane1,Franco dos Santos Diogo J1,Htut Win2,Aung Htoo Htoo2,Nyeing U Kyaw2,Reichert Sophie1,Lummaa Virpi1

Affiliation:

1. University of Turku Department of Biology, , Vesilinnantie, 5, Turku 20014, Finland

2. MONREC Myanma Timber Enterprise, , Myanmar

Abstract

Abstract Free-living species exhibit seasonal variation in various life history traits, including vital rates such as birth and death patterns. Different physiological mechanisms are thought to underlie the expression of life history traits that contribute to lifetime fitness. However, although the broad impacts of seasonality on life history traits and trade-offs is well established in many systems, the exact physiological mechanisms responsible for driving differences within and between individuals are poorly understood. Among them, molecular and physiological stress pathways, such as stress hypothalamic–pituitary–adrenal axis and oxidative stress, have potential to mediate relationships between individual survival, reproduction and environmental seasonality. Here, we determine how different physiological markers of stress including faecal cortisol metabolites (FCMs), heterophils/lymphocytes (H/L) ratio, two markers indicating oxidative balance including a marker of oxidative damage (reactive oxygen metabolites, ROM) and a marker of antioxidant defences (superoxide dismutase, SOD) and body weight vary in a large semi-captive population of Asian elephants (Elephas maximus) exposed to extreme seasonality (e.g. elevated temperatures). Individuals showed higher FCM levels and H/L ratios during cold season, indicating increased stress, and the lowest FCM levels during monsoon season and H/L ratios during hot and dry season, but we found no pattern in oxidative stress (ROM and SOD) levels. Hot season also associated with a decline in body weight. The present study shows how different physiological parameters (FCM levels and H/L ratio), molecular (oxidative stress) and body condition vary with seasonal changes, and how these parameters might allow individuals to adapt to such variations. Our results on an endangered long-lived species are crucial in indicating the most productive timing for conservation efforts, predicting how individuals cope with environmental changes, and allow for a more accurate representation of how animal physiology operates in nature.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3