Implantation, orientation and validation of a commercially produced heart-rate logger for use in a perciform teleost fish

Author:

Muller Cuen1,Childs Amber-Robyn1,Duncan Murray I12,Skeeles Michael R1,James Nicola C2,van der Walt Kerry-Ann12,Winkler Alexander C1,Potts Warren M1

Affiliation:

1. Department of Ichthyology and Fisheries Science, Rhodes University, Prince Alfred Street, PO Box 94, Makhanda 6140, South Africa

2. South African Institute for Aquatic Biodiversity (SAIAB), Somerset Street, Makhanda 6140, South Africa

Abstract

Abstract Quantifying how the heart rate of ectothermic organisms responds to environmental conditions (e.g. water temperature) is important information to quantify their sensitivity to environmental change. Heart rate studies have typically been conducted in lab environments where fish are confined. However, commercially available implantable heart rate biologgers provide the opportunity to study free-swimming fish. Our study aimed to determine the applicability of an implantable device, typically used on fusiform-shaped fish (e.g. salmonids), for a perciform fish where morphology and anatomy prevent ventral incisions normally used on fusiform-shaped fish. We found that ventrolateral incisions allowed placement near the heart, but efficacy of the loggers was sensitive to their orientation and the positioning of the electrodes. Electrocardiogram detection, signal strength and subsequent heart rate readings were strongly influenced by logger orientation with a significant effect on the quality and quantity of heart rate recordings. We provide details on the surgical procedures and orientation to guide future heart rate biologger studies on perciform-shaped fish.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3