Microclimate drives intraspecific thermal specialization: conservation perspectives in freshwater habitats

Author:

Bartolini Fabrizio1,Giomi Folco2

Affiliation:

1. NEMO Nature and Environment Management Operators S.R.L., Viale Mazzini 26, 50132 Florence, Italy

2. Via Maniciati 6, 35129 Padua, Italy

Abstract

Abstract Endemic and relict species are often confined to ecological refugia or over fragmented distributions, representing priority conservation subjects. Within these sites, the individual population may realize distinct niches to a varying degree of specialization. An emblematic example is provided by freshwater species segregated in thermal-mineral springs, where individuals may face highly diverse microclimates in limited geographic areas. Downscaling the characterization of physiological traits to microclimatic niches becomes pivotal to adopt effective conservation measures in these heterogeneous habitats. Melanopsis etrusca (Brot, 1862) is an endangered relict snail endemic to a small number of thermal-mineral streams in central Italy. Here we describe the thermal tolerance of two populations of M. etrusca inhabiting streams with distinctly different thermal regimes, investigating the extent of physiological and behavioural specialization to such diverse microclimatic niches. The comparison of oxygen consumption rates of a population dwelling in temperate streams, characterized by seasonal temperature fluctuations (12–27°C), with a population experiencing constantly hot water (35–38°C) revealed the absence of any seasonal or geographic effect on metabolic compensation. Conversely, mobility performances were maximized in the population inhabiting the hot stream. Interestingly, here, the snails exhibited emersion behaviour outside the water, triggered by temperatures above 37°C. In the field, individuals of this population are observed inactive on stream banks, conceivably to minimize the metabolic cost that otherwise would be induced by remaining in the hot water. Only a few individuals from the temperate stream exhibited the same behaviour when exposed to elevated temperatures, suggesting the exaptation of a pre-existing trait during the evolutionary process of adaptation to hot waters. The present results provide elements for the best practice in future programmes aimed at reintroducing stocks of threatened species across heterogeneous habitats. Our study further underlines the relevance of downscaling data collection for endangered species conservation in order to recognize microclimatic specializations.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

Reference78 articles.

1. A new method for non-parametric multivariate analysis of variance;Anderson;Austral Ecol,2001

2. The evolution of thermal physiology in ectotherms;Angilletta;J Therm Biol,2002

3. Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne;Anthony;Biol Conserv,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3