Nutritional consequences of breeding away from riparian habitats in Bank Swallows: new evidence from multiple endogenous markers

Author:

Génier Corrine S V1,Guglielmo Christopher G1,Mitchell Greg W2,Falconer Myles3,Hobson Keith A14

Affiliation:

1. Department of Biology, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada

2. Environment and Climate Change Canada, Wildlife Research Division, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada

3. Birds Canada, 115 Front Rd., P.O. Box 160, Port Rowan, Ontario N0E 1M0, Canada

4. Environment and Climate Change Canada, Wildlife Research Division, 11 Innovation Blvd., Saskatoon, Saskatchewan S7N 3H5, Canada

Abstract

Abstract The Bank Swallow (Riparia riparia), a threatened species in Canada, breeds primarily in banks at lakeshores and rivers and in artificial (typically inland) aggregate mining pits. Inland pits may be ecological traps for this species, but relative dietary trade-offs between these two nesting habitats have not been investigated. The availability of aquatic emergent insects at lakeshores may have associated nutritional benefits for growing nestlings due to increased omega-3 fatty acids (FAs) in prey. We compared the diets of juvenile swallows from lakeshore and inland pit sites using assays of stable isotope values (δ13C, δ15N, δ2H) of feathers, faecal DNA metabarcoding and blood plasma FAs. Colony proximity to Lake Erie influenced the use of aquatic versus terrestrial insects by Bank Swallow adults and juveniles. Feather δ2H was particularly useful as a tracer of aquatic emergent versus terrestrial prey, and inland juveniles had feathers enriched in 2H, reflective of diets composed of fewer aquatic emergent insects. DNA metabarcoding of juvenile and adult faecal material indicated that lakeshore birds consumed more aquatic-emergent chironomids than inland birds. Lakeshore juveniles had elevated plasma omega-3 eicosapentaenoic acid levels compared with inland pit-breeding birds. We discuss the need to consider ‘nutritional landscapes’ and the importance of this concept in conservation of declining species and populations.

Funder

Birds Canada via Mitacs Accelerate Program

Environment and Climate Change Canada

NSERC Discovery grant

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3