Triiodothyronine (T3) levels fluctuate in response to ambient temperature rather than nutritional status in a wild tropical ungulate

Author:

Hunninck L12,Jackson C R3,May R3,Røskaft E1,Palme R4,Sheriff M J2

Affiliation:

1. Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7034 Trondheim, Norway

2. Biology Department, University of Massachusetts, 285 Old Westport Road, Dartmouth, MA 02747, USA

3. Norwegian Institute for Nature Research, Høgskoleringen 9, 7034 Trondheim, Norway

4. Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria

Abstract

Abstract Animals can employ a range of physiological mechanisms in response to unpredictable changes within their environment, such as changes in food availability and human disturbances. For example, impala exhibit higher faecal glucocorticoid metabolite (FGM) levels—indicative of physiological stress—in response to low food quality and higher human disturbance. In this study, we measured faecal triiodothyronine (T3) metabolite (FTM) levels in 446 wild impala from 2016 to 2018 to test the hypothesis that environmental and human disturbances would affect their physiological status. We also validated a faecal thyroid hormone assay. T3 levels mainly regulate metabolic rate and drive thermoregulation—increasing with colder temperatures. We predicted that individuals would have lower FTM levels, indicative of poor physiological status, (i) when food quality was poor, (ii) when ambient temperature (Ta) was high, (iii) in areas of high human disturbance (due to food competition with livestock) and (iv) when FGM levels were high. Interestingly, we found that Ta was the most important predictor of FTM—FTM levels decreased by 70% from lowest to highest Ta—and food quality and human disturbance only influenced FTM levels when Ta was accounted for. FTM levels also tended to increase with increasing FGM levels, opposite our predictions. Our results suggest that food quality and availability may only partially influence FTM levels and that fluctuations in Ta are a significant driver of FTM levels in a wild tropical ungulate. Given that thyroid hormones are primarily responsible for regulating metabolic rate, they may be better indicators of how wild animals metabolically and energetically respond to environmental factors and only indicate poor nutritional status in extreme cases.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3