Avian mortality risk during heat waves will increase greatly in arid Australia during the 21st century

Author:

Conradie Shannon R12,Woodborne Stephan M34,Wolf Blair O5,Pessato Anaïs6,Mariette Mylene M6,McKechnie Andrew E12

Affiliation:

1. South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, 2 Cussonia Ave, Brummeria, Pretoria 0184, South Africa

2. DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Lynnwood Rd., Pretoria 0002, South Africa

3. iThemba LABS, Johannesburg, 514 Empire Rd, Johannesburg 2193, South Africa

4. Mammal Research Institute, University of Pretoria, Lynnwood Rd., Pretoria 0002, South Africa

5. UNM Biology Department, University of New Mexico, Albuquerque, NM 87131, U.S.A

6. Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds VIC 3216, Australia

Abstract

AbstractIntense heat waves are occurring more frequently, with concomitant increases in the risk of catastrophic avian mortality events via lethal dehydration or hyperthermia. We quantified the risks of lethal hyperthermia and dehydration for 10 Australian arid-zone avifauna species during the 21st century, by synthesizing thermal physiology data on evaporative water losses and heat tolerance limits. We evaluated risks of lethal hyperthermia or exceedance of dehydration tolerance limits in the absence of drinking during the hottest part of the day under recent climatic conditions, compared to those predicted for the end of this century across Australia. Increases in mortality risk via lethal dehydration and hyperthermia vary among the species modelled here but will generally increase greatly, particularly in smaller species (~10–42 g) and those inhabiting the far western parts of the continent. By 2100 CE, zebra finches’ potential exposure to acute lethal dehydration risk will reach ~ 100 d y−1 in the far northwest of Australia and will exceed 20 d y−1 over > 50% of this species’ current range. Risks of dehydration and hyperthermia will remain much lower for large non-passerines such as crested pigeons. Risks of lethal hyperthermia will also increase substantially for smaller species, particularly if they are forced to visit exposed water sources at very high air temperatures to avoid dehydration. An analysis of atlas data for zebra finches suggests that population declines associated with very hot conditions are already occurring in the hottest areas. Our findings suggest that the likelihood of persistence within current species ranges, and the potential for range shifts, will become increasingly constrained by temperature and access to drinking water. Our model adds to an increasing body of literature suggesting that arid environments globally will experience considerable losses of avifauna and biodiversity under unmitigated climate change scenarios.

Funder

National Science Foundation

National Research Foundation of South Africa

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3