Effects of elevated temperature and pCO2 on the respiration, biomineralization and photophysiology of the giant clam Tridacna maxima

Author:

Brahmi Chloé1,Chapron Leila2,Le Moullac Gilles3,Soyez Claude3,Beliaeff Benoît3,Lazareth Claire E4,Gaertner-Mazouni Nabila1,Vidal-Dupiol Jeremie35

Affiliation:

1. Univ. Polynésie française, IFREMER, ILM, IRD, EIO UMR 241, F-98702 Faa’a, Tahiti, Polynésie française

2. School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA

3. IFREMER, IRD, Institut Louis-Malardé, Univ. Polynésie française, EIO, F-98719 Taravao, Tahiti, Polynésie française, France

4. Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Muséum National d'Histoire Naturelle, 61 Rue Buffon, CP53, 75231, Paris Cedex 05, France

5. IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier France

Abstract

Abstract Many reef organisms, such as the giant clams, are confronted with global change effects. Abnormally high seawater temperatures can lead to mass bleaching events and subsequent mortality, while ocean acidification may impact biomineralization processes. Despite its strong ecological and socio-economic importance, its responses to these threats still need to be explored. We investigated physiological responses of 4-year-old Tridacna maxima to realistic levels of temperature (+1.5°C) and partial pressure of carbon dioxide (pCO2) (+800 μatm of CO2) predicted for 2100 in French Polynesian lagoons during the warmer season. During a 65-day crossed-factorial experiment, individuals were exposed to two temperatures (29.2°C, 30.7°C) and two pCO2 (430 μatm, 1212 μatm) conditions. The impact of each environmental parameter and their potential synergetic effect were evaluated based on respiration, biomineralization and photophysiology. Kinetics of thermal and/or acidification stress were evaluated by performing measurements at different times of exposure (29, 41, 53, 65 days). At 30.7°C, the holobiont O2 production, symbiont photosynthetic yield and density were negatively impacted. High pCO2 had a significant negative effect on shell growth rate, symbiont photosynthetic yield and density. No significant differences of the shell microstructure were observed between control and experimental conditions in the first 29 days; however, modifications (i.e. less-cohesive lamellae) appeared from 41 days in all temperature and pCO2 conditions. No significant synergetic effect was found. Present thermal conditions (29.2°C) appeared to be sufficiently stressful to induce a host acclimatization response. All these observations indicate that temperature and pCO2 are both forcing variables affecting T. maxima’s physiology and jeopardize its survival under environmental conditions predicted for the end of this century.

Funder

Université de la Polynésie française

Ifremer Institution

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3