Differential heat shock protein responses in two species of Pacific salmon and their utility in identifying heat stress

Author:

von Biela Vanessa R1ORCID,Regish Amy M2ORCID,Bowen Lizabeth3ORCID,Stanek Ashley E1ORCID,Waters Shannon3ORCID,Carey Michael P1ORCID,Zimmerman Christian E1ORCID,Gerken Jonathon4,Rinella Daniel4ORCID,McCormick Stephen D2ORCID

Affiliation:

1. U.S. Geological Survey, Alaska Science Center , 4210 University Drive, Anchorage, AK 99508, USA

2. U.S. Geological Survey, Eastern Ecological Science Center at the S.O. Conte Research Laboratory, One Migratory Way, Turners Falls, MA 01376, USA

3. U.S. Geological Survey , Western Ecological Science Center, One Shields Avenue, Davis, CA 95616, USA

4. U.S. Fish and Wildlife Service Anchorage Field Office, , 4700 BLM Road, Anchorage, AK 99507, USA

Abstract

Abstract Rapid and accelerating warming of salmon habitat has the potential to lower productivity of Pacific salmon (Oncorhynchus species) populations. Heat stress biomarkers can indicate where warming is most likely affecting fish populations; however, we often lack clear classifications that separate individuals with and without heat stress needed to make these tools operational. We conducted a heat exposure experiment with trials lasting 12 or 36 h using juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) to validate heat stress biomarkers in white muscle. Following habituation to 13°C, individuals were exposed to water temperatures that increased to 15°C, 17°C, 19°C, 21°C or 23°C. Heat shock protein 70 abundance (HSP70 measured by ELISA) and transcription of 13 genes (mRNA measured by qPCR) including three heat shock protein genes (hsp70, hsp90, hsp27) were measured. A distinct heat stress response was apparent by 21°C in juvenile Chinook salmon and 23°C in juvenile coho salmon using HSP70. A threshold for heat stress classification in Chinook salmon of > 2 ng HSP70 mg.1 total protein identified heat stress in 100% of 21 and 23°C treated individuals compared to 4% in cooler treatments. For coho salmon, > 3 ng HSP70 mg.1 total protein identified heat stress in 100% of 23°C treated individuals compared to 4% in cooler treatments. Transcription from a panel of genes separated individuals between cooler and stressful temperature experiences (≥21°C for Chinook salmon and ≥23°C for coho salmon) with ~ 85% correct classification. Our findings indicate that juvenile Chinook salmon were more temperature-sensitive than juvenile coho salmon and support the use of a HSP70 threshold sampled from muscle for assessing heat stress in individual wild Pacific salmon with an option for non-lethal biopsies for spawning adults.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3