Diverging landscape impacts on macronutrient status despite overlapping diets in managed (Apis mellifera) and native (Melissodes desponsa) bees

Author:

Mogren Christina L1,Benítez María-Soledad2,McCarter Kevin3,Boyer Frédéric4,Lundgren Jonathan G5

Affiliation:

1. Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, 3050 Maile Way Gilmore 310, Honolulu, HI 96822, USA

2. Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA

3. Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA 70802, USA

4. Laboratoire d’Écologie Alpine, Centre National de la Recherche Scientifique, Université Grenoble Alpes, F-38000 Grenoble, France

5. Ecdysis Foundation, Estelline, SD 57234, USA

Abstract

Abstract Declining pollinator populations worldwide are attributed to multiple stressors, including the loss of quality forage. Habitat management in agricultural areas often targets honey bees (Apis mellifera L.) specifically, with the assumption that native bees will benefit from an ‘umbrella species’ strategy. We tested this theory using a conservation physiology approach to compare the effects of landscape composition and floral dietary composition on the physiological status of honey bees and Melissodes desponsa in eastern South Dakota, USA. The total glycogen, lipid and protein concentrations were quantified from field collected bees. Next-generation sequencing of the trnL chloroplast gene from bee guts was used to evaluate dietary composition. The effects of landscape and dietary composition on macronutrient concentrations were compared between bee species. As the mean land-use patch area increased, honey bee glycogen levels increased, though M. desponsa experienced a decrease in glycogen. Protein levels decreased in honey bees as the largest patch index, a measure of single patch dominance, increased versus M. desponsa. Lipids in both species were unaffected by the measured landscape variables. Dietary analysis revealed that honey bees foraged preferentially on weedy non-native plant species, while M. desponsa sought out native and rarer species, in addition to utilizing non-native plants. Both species foraged on Asteraceae, Oleaceae and Fabaceae, specifically Melilotus sp. and Medicago sp. Dietary composition was not predictive of the macronutrients measured for either species. Together, these data highlight the management importance of including patch area in conservation recommendations, as bee species may have divergent physiological responses to landscape characteristics. While solitary bees may forage on weedy introduced plants in agricultural areas, robust strategies should also reincorporate native plant species, though they may not be preferred by honey bees, to maximize overall health and diversity of pollinator communities.

Funder

2014 National Honey Board grant

US Department of Agriculture Agricultural Research Service

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modeling,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3