Biochemical and biological validations of a faecal glucocorticoid metabolite assay in mandrills (Mandrillus sphinx)

Author:

Lavin Shana R1,Woodruff Miles C23,Atencia Rebeca3,Cox Debby3,Woodruff Glenn T3,Setchell Joanna M2,Wheaton Catharine J1

Affiliation:

1. Animals, Science and Environment, Disney’s Animal Kingdom®, Lake Buena Vista, FL, USA

2. Anthropology Department and Behavior, Ecology and Evolution Research Centre, Durham University, Durham, UK

3. The Jane Goodall Institute, Vienna, VA, USA

Abstract

Abstract Stress is a major factor in determining success when releasing endangered species into the wild but is often overlooked. Mandrills (Mandrills sphinx) are vulnerable to extinction due to habitat loss and demand for bush meat and the pet trade. To help bolster in situ populations, rehabilitated rescued mandrills recently were released into a protected area in the Republic of Congo. The goal of this study was to validate the use of faecal glucocorticoid metabolite enzyme immunoassays (EIAs) in mandrills and test field-friendly faecal hormone extraction techniques that can subsequently be used to monitor the stress physiology and welfare of mandrills throughout the release process. Using faecal samples collected from ex situ mandrills, we tested cortisol, corticosterone, 11β-hydroxyetiocholanolone (69a), and 11-oxoetiocholanolone EIAs. Absolute concentrations, hormone profiles following medical procedures or translocation, and high-performance liquid chromatography fraction immunoreactivity showed that the 69a assay was the best choice to monitor the stress response in this species. Samples with delayed extraction or drying times had 40–80% lower 69a concentrations than samples extracted immediately post-collection and frozen. The 69a EIA is an appropriate assay for monitoring welfare in this species in situ or ex situ, and results indicated that consistent extraction methods are important for accurate comparisons.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecological Modelling,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3